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Introduction
This goal of this report is to predict the age of abalones. The dataset we use for this investigation consists of
the following variables:

Variable Name Description
Type Sex: Male (M), Female (F), and Infant (I)
LongestShell Longest Shell Measurement
Diameter Diameter
Height Height
WholeWeight Total Weight
ShuckedWeight Shucked Weight
VisceraWeight Viscera Weight
ShellWeight Shell Weight
Age Abalone Age

Exploratory Data Analysis
The data exhibit three main features which we will need to pay attention to: non-constant variance, non-linear
relationships, and correlated covariates. We will describe each in more detail.

Non-Constant Variance

All of the continuous covariates demonstrate non-constant variance, specifically the variance of Age tends
to increase as the covariates increase. This is exemplified below by LongestShell, Diameter, Height, and
WholeWeight.
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Examining the variance of the residuals will be crucial, especially for linear regression. Note the two extreme
outliers for the Height variable; we will have to examine these points closely as well.

Non-linear Relationships

The relationship between Age and the four weight-based variables is clearly non-linear. We plot them below.
We may have to transform these variables when fitting linear models to the data.
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Correlated Covariates

All of the continuous covariates exhibit strong correlation with one another. The smallest Pearson Correlation
Coefficient of two covariates is still larger than 0.75, with some pairs even having correlation values over
0.95. This suggests that we may have to model interaction between some of the covariates. Two of the most
extreme cases are shown below.
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For completeness, we show the estimated density of Age for each of the three Type categories. We can see
that the distribution of Age is almost identical for Males versus Females, but the distribution for Infants is
noticably differant than the other two.

5 10 15 20 25 30

0.
00

0.
05

0.
10

0.
15

0.
20

Age

D
en

si
ty

Male
Female
Infant

Train-Test Splits

For some of the models we plan to investigate it is expensive to perform cross-validation. For this reason
we split the data into a training and testing dataset. We randomly assign 3341 observations to the training
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set and the remaining 835 to the testing set, constituting approximately 80% and 20% of the total data,
respectively. We withold the test set until the very end, regardless of whether it is feasible to perform cross
validation, so that we can fairly compare all models.

Modeling
We will build three models: a linear regression model, an additive model, and a random forest.

Linear Regression

We start out by regressing Age against all the other variables. This will give us a baseline model with which
to compare our other models. We construct the model

Age = β0 + β1TypeI + β2TypeM + β3LongestShell + β4Diameter + β5Height + β6WholeWeight+

β7ShuckedWeight + β8VisceraWeight + β9ShellWeight + ϵ

where TypeI is the indicator variable for Type = 'I' and TypeM is the indicator variable for Type = 'M'.

This model has a F-test p-value of approximately zero and a R2 of 0.5328. All variables are significant at
α = 0.05 except for TypeM and LongestShell.

Additive Model

We use the mgcv package to fit an additive model. We model each covariate with splines, except for Type
which we keep linear because it is categorical. This model explains 57.7% of the deviance. The indicator
variable for Type = 'I' is significant, and all of the continuous covariates are approximately signficant.

Random Forest

Finally, we use the randomForest package to fit a random forest model. This model explains 56.49% of the
variance in the data.

Diagnostics and Model Selection
Linear Model Diagnostics

Outliers Looking at the Cooks Distances of the residuals for the linear model, we can see that there is an
extreme outlier. We remove this observation from the training data, refit the model, and find another large
outlier. These two observations are the ones pointed out previously which have extremely large values for
Height. We decided to remove both of these points from the training set entirely, and refit all of the models.
Below we show the Cooks Distances from the linear model before (left) and after (right) removing the two
outliers. We can see that after removing these points there are no obvious outliers.
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Interaction Terms Despite the high correlation among the covariates, adding interaction terms did not
substantially improve the residuals, and only increased the R2 by about 0.01, which did not seem worth it
for the increase in model complexity. We tried a variety of different combinations of interaction terms, and
always got roughly the same result.

Transformations Despite the non-linear relationships between Age and the four weight-based covariates,
the relationships between the residuals and the covariates are fairly linear. The only transformation that
improved the residuals was applying the square root function to ShellWeight. Below are some of the residual
diagnostic plots.
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The main issues with the model are the non-constant variance of the residuals and the fact that the distribution
of the residuals is not very normal, as shown in the Q-Q Plot. These violate the assumptions of Multiple
Linear Regression, and must be taken into account when evaluating this model.

Additive Model and Random Forest

Beyond removing the two outliers, we did not discover any reason to modify the covariates for the additive
model and random forest. Their residuals are shown below.
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Model Evaluation

Now that we have our final models, we evaluate each of them on the held-out test set. The test set error and
95% confidence intervals for the true error are given below. We can see that the additive model and random
forest have about the same error on the test set, while the linear model is slightly worse, although all three
confidence intervals are overlapping.

Test Set Error 95% Confidence Interval
5.1874 (4.4616, 5.9132)
4.9934 (4.2439, 5.743)
4.9428 (4.1766, 5.709)

Final Model
We recommend using the additive model. The assumptions for the linear regression model were clearly
violated, and had slightly worse error on the held-out test set. The additive model and the random forest
had similar performance, but the additive model is more interpretable.

This additive model is of the form

Age = α+m1(TypeI)+m2(TypeM )+m3(LongestShell)+m4(Diameter)+m5(Height)+m6(WholeWeight)+

m7(ShuckedWeight) + m8(VisceraWeight) + m9(ShellWeight) + ϵ

where m1 is a linear model and m2 through m9 are spline-based models. Below we show each of the component
models that make up the additive model.
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Based on the plots it looks like Whole Weight, Shucked Weight, and Shell Weight are the most important
features, although all variables have a non-zero relationship with Age. We can also see from the plot of Type
that the age of Infants are generally lower than Males and Females, as we pointed out earlier. The coefficient
for m1(TypeI) is significant, and the approximate p-values for the continuous covariates shows they are all
significant.

Limitations

We were unable to construct a linear model that satisfied the assumptions of Multiple Linear Regression, so
it may be wrong to consider the linear model at all. We were able to construct a better model however, so
ultimately it was not an issue.
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Code Appendix

## ---- echo=FALSE, include=FALSE-----------------------------------------------
## Import Packages
library(knitr)
library(mgcv)
library(randomForest)

## Load Data
df = read.csv("abalone.csv", head=TRUE)
df = df[,2:10]
df$Type = as.factor(df$Type)

## ----echo=FALSE---------------------------------------------------------------
# Introduction

## Create Table of Variable Descriptions
variables = names(df)
descriptions = c(

"Sex: Male (M), Female (F), and Infant (I)",
"Longest Shell Measurement",
"Diameter",
"Height",
"Total Weight",
"Shucked Weight",
"Viscera Weight",
"Shell Weight",
"Abalone Age"

)
variable_info = data.frame("Variable Name"=variables, "Description"=descriptions,

check.names=FALSE)
kable(variable_info)

## ---- echo=FALSE, fig.dim=c(8,4.5)--------------------------------------------
# Exploratory Data Analysis

## Plot Age vs LongestShell, Diameter, Height, and WholeWeight
par(mfrow=c(2,2),oma = c(0, 1, 0, 0), mar = c(3, 2, 0, 1), mgp = c(2, 1, 0), xpd = NA)
plot(df$LongestShell, df$Age, pch=19, cex=0.25, xlab="Longest Shell", ylab="Age")
plot(df$Diameter, df$Age, ylab=NA, pch=19, cex=0.25, xlab="Diameter")
plot(df$Height, df$Age, pch=19, cex=0.25, xlab="Height", ylab="Age")
plot(df$WholeWeight, df$Age, ylab=NA, pch=19, cex=0.25, xlab="Whole Weight")

## ---- echo=FALSE, fig.dim=c(8,4.5)--------------------------------------------
## Plot Age vs. WholeWeight, ShuckedWeight, VisceraWeight, and ShellWeight
par(mfrow=c(2,2),oma = c(0, 1, 0, 0), mar = c(3, 2, 0, 1), mgp = c(2, 1, 0), xpd = NA)
plot(df$WholeWeight, df$Age, pch=19, cex=0.25, xlab="Whole Weight", ylab="Age")
plot(df$ShuckedWeight, df$Age, ylab=NA, pch=19, cex=0.25, xlab="Shucked Weight")
plot(df$VisceraWeight, df$Age, pch=19, cex=0.25, xlab="Viscera Weight", ylab="Age")
plot(df$ShellWeight, df$Age, ylab=NA, pch=19, cex=0.25, xlab="Shell Weight")
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## ---- echo=FALSE, fig.dim=c(8,3)----------------------------------------------
## Covariate Correlations
corrs = cor(df[,2:9])

## Plot LongestShell vs. Diameter, and WholeWeight vs. ShuckedWeight
par(mfrow=c(1,2),oma = c(0, 1, 0, 0), mar = c(3, 2, 0, 1.5), mgp = c(2, 1, 0), xpd = NA)
plot(df$LongestShell, df$Diameter, pch=19, cex=0.25,

xlab="Longest Shell", ylab="Diameter")
text(0.3, 0.6, "Correlation = 0.9877")
plot(df$WholeWeight, df$ShuckedWeight, pch=19, cex=0.25,

xlab="Whole Weight", ylab="Shucked Weight")
text(0.8, 1.365, "Correlation = 0.9689")

## ----echo=FALSE, out.width="80%", fig.align='center'--------------------------
## Conditional distribution of Age given Type
male_density = density(df$Age[df$Type == 'M'])
female_density = density(df$Age[df$Type == 'F'])
infant_density = density(df$Age[df$Type == 'I'])

plot(male_density, col = 'blue',
ylim=c(0,max(male_density$y, female_density$y, infant_density$y)),
xlab="Age", ylab="Density", main=NA)

lines(female_density, col='red')
lines(infant_density, col='green')
legend('topright', c('Male', 'Female', 'Infant'), lty = c(1,1),

col = c('blue', 'red', 'green'))

## ----echo=FALSE---------------------------------------------------------------
## Train-Test Splits
set.seed(36401)
split_indices = sample.int(nrow(df), size=835)
train = df[-split_indices, ]
test = df[split_indices, ]

## ----echo=FALSE---------------------------------------------------------------
# Modeling

## Baseline Linear Regression Model
out = lm(Age ~ ., data=train)

## ----echo=FALSE---------------------------------------------------------------
## Additive Model
out_add = gam(Age ~ Type + s(LongestShell) + s(Diameter) + s(Height) +

s(WholeWeight) + s(ShuckedWeight) + s(VisceraWeight) +
s(ShellWeight), data=train)

## ----echo=FALSE---------------------------------------------------------------
## Random Forest
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forest_out = randomForest(Age ~ ., importance = TRUE, data = train, ntree = 500)

## ---- echo=FALSE, fig.dim=c(8,2)----------------------------------------------
# Diagnostics and Model Selection

## Plot Cooks Distance Before Removing Outlier
par(mfrow=c(1,2),oma = c(0, 1, 0, 0), mar = c(3, 2, 0, 1.5), mgp = c(2, 1, 0), xpd = NA)
plot(cooks.distance(out), type='h', ylab="Cooks Distance")

## Remove Outlier and Refit Twice
train = train[-which.max(cooks.distance(out)),]
out = lm(Age ~ ., data=train)
train = train[-which.max(cooks.distance(out)),]
out = lm(Age ~ ., data=train)

## Also Refit Additive and Random Forest
out_add = gam(Age ~ Type + s(LongestShell) + s(Diameter) + s(Height) +

s(WholeWeight) + s(ShuckedWeight) + s(VisceraWeight) +
s(ShellWeight), data=train)

out_forest = randomForest(Age ~ ., importance = TRUE, data = train, ntree = 500)

## Plot Cooks Distance After Removing Outliers
plot(cooks.distance(out), type='h', ylab="Cooks Distance")

## ---- echo=FALSE, fig.dim=c(8,4.5)--------------------------------------------
## Transform ShellWeight
out2 = lm(Age ~ Type + LongestShell + Diameter + Height + WholeWeight +

ShuckedWeight + VisceraWeight + I(sqrt(ShellWeight)) , data=train)
## Plot Diagnostics
par(mfrow=c(2,2),oma = c(0, 1, 0, 0), mar = c(3, 2, 0, 1), mgp = c(2, 1, 0), xpd = NA)
plot(fitted(out2), rstudent(out2), pch=19, cex=0.25,

xlab="Fitted Values", ylab="Standardized Residuals")
abline(h=0, col='red', xpd=FALSE)
plot(train$LongestShell, rstudent(out2), ylab=NA, pch=19, cex=0.25,

xlab="Longest Shell")
abline(h=0, col='red', xpd=FALSE)
plot(train$ShellWeight, rstudent(out2), pch=19, cex=0.25,

xlab="ShellWeight", ylab="Standardized Residuals")
abline(h=0, col='red', xpd=FALSE)
qqnorm(rstudent(out2), main=NA)
qqline(rstudent(out2), xpd=FALSE)
text(-1.5, 4, "Normal Q-Q Plot")

## ---- echo=FALSE, fig.dim=c(8,3)----------------------------------------------
## Plot Additive Model Residuals
par(mfrow=c(1,2),oma = c(0, 1, 0, 0), mar = c(3, 2, 1, 1.5), mgp = c(2, 1, 0), xpd = NA)
plot(fitted(out_add), residuals(out_add), pch=19, cex=0.25, main="Additive Model",

xlab="Fitted Values", ylab="Residuals")
abline(h=0, col='red', xpd=FALSE)
## Plot Random Forest Residuals
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plot(out_forest$predicted, train$Age - out_forest$predicted, pch=19, cex=0.25,
main="Random Forest", xlab="Fitted Values", ylab="Residuals")

abline(h=0, col='red', xpd=FALSE)

## ----echo=FALSE---------------------------------------------------------------
## Get Test Set Predictions
test_X = test[,1:8]
test_y = test$Age
preds_linear = predict(out2, test_X)
preds_add = predict(out_add, test_X)
preds_forest = predict(out_forest, test_X)

Error_Conf = function(y_hat, y) {
b_ijs = (y - y_hat)ˆ2
r_hat = mean(b_ijs)
se = sqrt(sum((b_ijs - r_hat)ˆ2) / (length(y)-1)) / sqrt(length(y))
z = -qnorm(0.05/2)

lower = round(r_hat - z*se, digits=4)
upper = round(r_hat + z*se, digits=4)
return(c(round(r_hat, digits=4), paste0('(',lower,', ',upper,')')))

}

## Construct Error Confidence Intervals
error_linear = Error_Conf(preds_linear, test_y)
error_add = Error_Conf(preds_add, test_y)
error_forest = Error_Conf(preds_forest, test_y)

## Display in Table
error_info = data.frame(

"Test Set Error"=c(error_linear[1], error_add[1], error_forest[1]),
"95% Confidence Interval"=c(error_linear[2], error_add[2], error_forest[2]),
check.names=FALSE

)
kable(error_info)

## ---- echo=FALSE, , fig.dim=c(8,8)--------------------------------------------
# Final Model

## Plot Sub-models of Additive Model
par(mfrow=c(4,2),oma = c(0, 1, 0, 0), mar = c(4, 3, 0, 1), mgp = c(2, 1, 0), xpd = NA)
plot(out_add, all.terms=TRUE, select=1, xlab="LongestShell", ylab="Age")
plot(out_add, all.terms=TRUE, select=2, xlab="Diameter", ylab=NA)
plot(out_add, all.terms=TRUE, select=3, xlab="Height", ylab="Age")
plot(out_add, all.terms=TRUE, select=4, xlab="WholeWeight", ylab=NA)
plot(out_add, all.terms=TRUE, select=5, xlab="ShuckedWeight", ylab="Age")
plot(out_add, all.terms=TRUE, select=6, xlab="VisceraWeight", ylab=NA)
plot(out_add, all.terms=TRUE, select=7, xlab="ShellWeight", ylab="Age")
plot(out_add, all.terms=TRUE, select=8, xlab="Type", ylab=NA)
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## ----code = readLines(knitr::purl(knitr::current_input(), documentation = 1)), echo = T, eval = F----
## NA

12


	Introduction
	Exploratory Data Analysis
	Non-Constant Variance
	Non-linear Relationships
	Correlated Covariates
	Type
	Train-Test Splits

	Modeling
	Linear Regression
	Additive Model
	Random Forest

	Diagnostics and Model Selection
	Linear Model Diagnostics
	Additive Model and Random Forest
	Model Evaluation

	Final Model
	Limitations

	Code Appendix

